1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
use na::{DVectorSliceMut, Isometry3, RealField, Unit, Vector3};

use crate::joint::{Joint, PrismaticJoint, RevoluteJoint};
use crate::math::{JacobianSliceMut, Velocity};
use crate::object::{BodyPartHandle, Multibody, MultibodyLink};
use crate::solver::{ConstraintSet, GenericNonlinearConstraint, IntegrationParameters};

/// A joint that allows 1 rotational and 2 translational degrees of freedom.
#[derive(Copy, Clone, Debug)]
pub struct PlanarJoint<N: RealField> {
    prism1: PrismaticJoint<N>,
    prism2: PrismaticJoint<N>,
    revo: RevoluteJoint<N>,
}

impl<N: RealField> PlanarJoint<N> {
    /// Create a new planar joint where both translational degrees of freedoms are along the provide axii.
    ///
    /// The rotational degree of freedom is along an axis orthogonal to `axis1` and `axis2`. Idealy, the two
    /// provided axii should be orthogonal. All axis are in the local coordinate space of the attached multibody links.
    ///
    /// Panics if `axis1` and `axis2` are near-colinear.
    pub fn new(
        axis1: Unit<Vector3<N>>,
        axis2: Unit<Vector3<N>>,
        pos1: N,
        pos2: N,
        angle: N,
    ) -> Self {
        let cross = axis1.cross(&*axis2);
        let normal = Unit::try_new(cross, N::default_epsilon())
            .expect("A planar joint cannot be defined from two collinear axis.");
        let prism1 = PrismaticJoint::new(axis1, pos1);
        let prism2 = PrismaticJoint::new(axis2, pos2);
        let revo = RevoluteJoint::new(normal, angle);

        PlanarJoint {
            prism1,
            prism2,
            revo,
        }
    }
}

impl<N: RealField> Joint<N> for PlanarJoint<N> {
    #[inline]
    fn ndofs(&self) -> usize {
        3
    }

    fn body_to_parent(&self, parent_shift: &Vector3<N>, body_shift: &Vector3<N>) -> Isometry3<N> {
        self.prism1.translation()
            * self.prism2.translation()
            * self.revo.body_to_parent(parent_shift, body_shift)
    }

    fn update_jacobians(&mut self, body_shift: &Vector3<N>, vels: &[N]) {
        self.prism1.update_jacobians(body_shift, vels);
        self.prism2.update_jacobians(body_shift, &vels[1..]);
        self.revo.update_jacobians(body_shift, &vels[2..]);
    }

    fn jacobian(&self, transform: &Isometry3<N>, out: &mut JacobianSliceMut<N>) {
        self.prism1.jacobian(transform, &mut out.columns_mut(0, 1));
        self.prism2.jacobian(transform, &mut out.columns_mut(1, 1));
        self.revo.jacobian(transform, &mut out.columns_mut(2, 1));
    }

    fn jacobian_dot(&self, transform: &Isometry3<N>, out: &mut JacobianSliceMut<N>) {
        self.prism1
            .jacobian_dot(transform, &mut out.columns_mut(0, 1));
        self.prism2
            .jacobian_dot(transform, &mut out.columns_mut(1, 1));
        self.revo
            .jacobian_dot(transform, &mut out.columns_mut(2, 1));
    }

    fn jacobian_dot_veldiff_mul_coordinates(
        &self,
        transform: &Isometry3<N>,
        vels: &[N],
        out: &mut JacobianSliceMut<N>,
    ) {
        self.prism1.jacobian_dot_veldiff_mul_coordinates(
            transform,
            vels,
            &mut out.columns_mut(0, 1),
        );
        self.prism2.jacobian_dot_veldiff_mul_coordinates(
            transform,
            &[vels[1]],
            &mut out.columns_mut(1, 1),
        );
        self.revo.jacobian_dot_veldiff_mul_coordinates(
            transform,
            &[vels[2]],
            &mut out.columns_mut(2, 1),
        );
    }

    fn jacobian_mul_coordinates(&self, vels: &[N]) -> Velocity<N> {
        self.prism1.jacobian_mul_coordinates(vels)
            + self.prism2.jacobian_mul_coordinates(&[vels[1]])
            + self.revo.jacobian_mul_coordinates(&[vels[2]])
    }

    fn jacobian_dot_mul_coordinates(&self, vels: &[N]) -> Velocity<N> {
        // NOTE: The two folowing are zero.
        // self.prism1.jacobian_dot_mul_coordinates(vels)       +
        // self.prism2.jacobian_dot_mul_coordinates(&[vels[1]]) +
        self.revo.jacobian_dot_mul_coordinates(&[vels[2]])
    }

    fn default_damping(&self, out: &mut DVectorSliceMut<N>) {
        self.prism1.default_damping(&mut out.rows_mut(0, 1));
        self.prism2.default_damping(&mut out.rows_mut(1, 1));
        self.revo.default_damping(&mut out.rows_mut(2, 1));
    }

    fn integrate(&mut self, parameters: &IntegrationParameters<N>, vels: &[N]) {
        self.prism1.integrate(parameters, vels);
        self.prism2.integrate(parameters, &[vels[1]]);
        self.revo.integrate(parameters, &[vels[2]]);
    }

    fn apply_displacement(&mut self, disp: &[N]) {
        self.prism1.apply_displacement(disp);
        self.prism2.apply_displacement(&[disp[1]]);
        self.revo.apply_displacement(&[disp[2]]);
    }

    #[inline]
    fn clone(&self) -> Box<dyn Joint<N>> {
        Box::new(*self)
    }

    fn num_velocity_constraints(&self) -> usize {
        self.prism1.num_velocity_constraints()
            + self.prism2.num_velocity_constraints()
            + self.revo.num_velocity_constraints()
    }

    fn velocity_constraints(
        &self,
        parameters: &IntegrationParameters<N>,
        multibody: &Multibody<N>,
        link: &MultibodyLink<N>,
        assembly_id: usize,
        dof_id: usize,
        ext_vels: &[N],
        ground_j_id: &mut usize,
        jacobians: &mut [N],
        constraints: &mut ConstraintSet<N, (), (), usize>,
    ) {
        self.prism1.velocity_constraints(
            parameters,
            multibody,
            link,
            assembly_id,
            dof_id,
            ext_vels,
            ground_j_id,
            jacobians,
            constraints,
        );
        self.prism2.velocity_constraints(
            parameters,
            multibody,
            link,
            assembly_id,
            dof_id + 1,
            ext_vels,
            ground_j_id,
            jacobians,
            constraints,
        );
        self.revo.velocity_constraints(
            parameters,
            multibody,
            link,
            assembly_id,
            dof_id + 2,
            ext_vels,
            ground_j_id,
            jacobians,
            constraints,
        );
    }

    fn num_position_constraints(&self) -> usize {
        // NOTE: we don't test if constraints exist to simplify indexing.
        3
    }

    fn position_constraint(
        &self,
        i: usize,
        multibody: &Multibody<N>,
        link: &MultibodyLink<N>,
        handle: BodyPartHandle<()>,
        dof_id: usize,
        jacobians: &mut [N],
    ) -> Option<GenericNonlinearConstraint<N, ()>> {
        if i == 0 {
            self.prism1
                .position_constraint(0, multibody, link, handle, dof_id, jacobians)
        } else if i == 1 {
            self.prism2
                .position_constraint(0, multibody, link, handle, dof_id + 1, jacobians)
        } else {
            self.revo
                .position_constraint(0, multibody, link, handle, dof_id + 2, jacobians)
        }
    }
}

prismatic_motor_limit_methods_1!(PlanarJoint, prism1);
prismatic_motor_limit_methods_2!(PlanarJoint, prism2);
revolute_motor_limit_methods!(PlanarJoint, revo);