1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/*!
nphysics
========
**nphysics** is a 2 and 3-dimensional physics engine for games and animations.
It uses [ncollide](http://ncollide.org) for collision detection, and
[nalgebra](http://nalgebra.org) for vector/matrix math. 2D and 3D
implementations both share the same code!


Examples are available in the `examples2d` and `examples3d` directories. There
is also a short (outdated) [demonstration video](http://youtu.be/CANjXZ5rocI).
An on-line version of this documentation is available
[here](http://nphysics.org). Feel free to ask for help and discuss features on
the official [user forum](http://users.nphysics.org).

## Why another physics engine?
There are a lot of physics engine out there.
However having a physics engine written in Rust is much more fun than
writing bindings and has several advantages:

- it shows that Rust is suitable for soft real-time applications
- it shows how well Rust behaves with highly generic code
- it shows that there is no need to write two separate engine for 2D and 3D:
  genericity wrt the dimension is possible (modulo low level arithmetic
  specializations for each dimension).
- in a not-that-near future, C++ will die of ugliness. Then, people will
  search for a physics engine and **nphysics** will be there, proudly
  exhibiting its _Rusty_ sexyness.

## Compilation
You will need the latest release of the [Rust compiler](http://www.rust-lang.org)
and the official package manager: [Cargo](https://github.com/rust-lang/cargo).

If you want to use the 2D version of `nphysics`, add the crate named
`nphysics2d` to your dependencies:

```ignore
[dependencies]
nphysics2d = "0.8"
```

For the 3D version, add the crate named `nphysics3d`:

```ignore
[dependencies]
nphysics3d = "0.8"
```

Use `make examples` to build the demos and execute `./your_favorite_example_here --help`
to see all the cool stuffs you can do.

## Features
- Static and dynamic rigid bodies.
- Common convex primitives: cone, box, ball, cylinder.
- Concave geometries build from convex primitives (aka. compound geometries).
- Stable stacking.
- Island based sleeping (objects deactivation).
- Ray casting.
- Swept sphere based continuous collision detection.
- Ball-in-socket joint.
- FixedJoint joint.
- Sensors.

## What is missing?
**nphysics** is a very young library and needs to learn a lot of things to
become a grown up. Many missing features are because of missing features on
**ncollide**. Features missing from **nphysics** itself include:

- kinematic bodies
- efficient signaling system
- more joints, joint limits, joint motors and breakable joints.
- soft-bodies (see https://github.com/natal/roft for a draft)
- parallel pipeline
- GPU-based pipeline

## Dependencies
All dependencies are automatically cloned with a recursive clone.
The libraries needed to compile the physics engine are:

* [ncollide](http://ncollide.org): the collision detection library.
* [nalgebra](http://nalgebra.org): the linear algebra library.

The libraries needed to compile the examples are:

*/

#![deny(non_camel_case_types)]
#![deny(unused_parens)]
#![deny(non_upper_case_globals)]
#![deny(unused_qualifications)]
#![deny(missing_docs)]
#![deny(unused_results)]
#![warn(non_camel_case_types)]
#![allow(missing_copy_implementations)]
#![doc(html_root_url = "http://nphysics-dev.org/doc")]

#[macro_use]
extern crate approx;
#[macro_use]
extern crate downcast;

extern crate alga;
extern crate nalgebra as na;
#[cfg(feature = "dim2")]
extern crate ncollide2d as ncollide;
#[cfg(feature = "dim3")]
extern crate ncollide3d as ncollide;
extern crate num_traits as num;
extern crate slab;

/*
 * The two following crates are pulled-in for
 * measuring time.
 */
#[cfg(not(any(target_arch = "wasm32", target_arch = "asmjs")))]
extern crate time;

#[cfg(any(target_arch = "wasm32", target_arch = "asmjs"))]
#[macro_use]
extern crate stdweb;

//#[cfg(test)]
//extern crate test;

pub mod algebra;
pub mod counters;
pub mod detection;
pub mod force_generator;
pub mod joint;
pub mod object;
pub mod solver;
pub mod utils;
pub mod volumetric;
pub mod world;
// mod tests;

/// Compilation flags dependent aliases for mathematical types.
#[cfg(feature = "dim3")]
pub mod math {
  use algebra::{Force3, Inertia3, Velocity3};
  use na::{
    Dynamic, Isometry3, Matrix3, Matrix6, MatrixMN, MatrixSlice6xX, MatrixSliceMut6xX, Point3,
    Translation3, U3, U6, UnitQuaternion, Vector3, Vector6,
  };

  /// The maximum number of possible rotations and translations of a rigid body.
  pub const SPATIAL_DIM: usize = 6;
  /// The maximum number of possible rotations of a rigid body.
  pub const ANGULAR_DIM: usize = 3;
  /// The maximum number of possible translations of a rigid body.
  pub const DIM: usize = 3;

  /// The dimension of the ambiant space.
  pub type Dim = U3;

  /// The dimension of a spatial vector.
  pub type SpatialDim = U6;

  /// The dimension of the rotations.
  pub type AngularDim = U3;

  /// The point type.
  pub type Point<N> = Point3<N>;

  /// The angular vector type.
  pub type AngularVector<N> = Vector3<N>;

  /// The vector type.
  pub type Vector<N> = Vector3<N>;

  /// The vector type with dimension `SpatialDim × 1`.
  pub type SpatialVector<N> = Vector6<N>;

  /// The orientation type.
  pub type Orientation<N> = Vector3<N>;

  /// The transformation matrix type.
  pub type Isometry<N> = Isometry3<N>;

  /// The rotation matrix type.
  pub type Rotation<N> = UnitQuaternion<N>;

  /// The translation type.
  pub type Translation<N> = Translation3<N>;

  /// The velocity type combining the linear velocity and the angular velocity.
  pub type Velocity<N> = Velocity3<N>;

  /// The force type combining a linear force and a torque.
  pub type Force<N> = Force3<N>;

  /// The inertia tensor type.
  pub type AngularInertia<N> = Matrix3<N>;

  /// The inertia type.
  pub type Inertia<N> = Inertia3<N>;

  /// The inertia matrix type.
  pub type InertiaMatrix<N> = Matrix6<N>;

  /// Square matrix with dimension `SpatialDim × SpatialDim`.
  pub type SpatialMatrix<N> = Matrix6<N>;

  /// The type of a constraint jacobian in twist coordinates.
  pub type Jacobian<N> = MatrixMN<N, U6, Dynamic>;

  /// The type of a slice of the constraint jacobian in twist coordinates.
  pub type JacobianSlice<'a, N> = MatrixSlice6xX<'a, N>;

  /// The type of a mutable slice of the constraint jacobian in twist coordinates.
  pub type JacobianSliceMut<'a, N> = MatrixSliceMut6xX<'a, N>;
}

/// Compilation flags dependent aliases for mathematical types.
#[cfg(feature = "dim2")]
pub mod math {
  use algebra::{Force2, Inertia2, Velocity2};
  use na::{
    Dynamic, Isometry2, Matrix1, Matrix3, MatrixMN, MatrixSlice3xX, MatrixSliceMut3xX, Point2,
    Translation2, U1, U2, U3, UnitComplex, Vector1, Vector2, Vector3,
  };

  /// The maximum number of possible rotations and translations of a rigid body.
  pub const SPATIAL_DIM: usize = 3;
  /// The maximum number of possible rotations of a rigid body.
  pub const ANGULAR_DIM: usize = 1;
  /// The maximum number of possible translations of a rigid body.
  pub const DIM: usize = 2;

  /// The dimension of the ambiant space.
  pub type Dim = U2;

  /// The dimension of the rotation.
  pub type AngularDim = U1;

  /// The dimension of a spatial vector.
  pub type SpatialDim = U3;

  /// The point type.
  pub type Point<N> = Point2<N>;

  /// The vector type with dimension `SpatialDim × 1`.
  pub type SpatialVector<N> = Vector3<N>;

  /// The angular vector type.
  pub type AngularVector<N> = Vector1<N>;

  /// The vector type.
  pub type Vector<N> = Vector2<N>;

  /// The orientation type.
  pub type Orientation<N> = Vector1<N>;

  /// The transformation matrix type.
  pub type Isometry<N> = Isometry2<N>;

  /// The rotation matrix type.
  pub type Rotation<N> = UnitComplex<N>;

  /// The translation type.
  pub type Translation<N> = Translation2<N>;

  /// The velocity type combining the linear velocity and the angular velocity.
  pub type Velocity<N> = Velocity2<N>;

  /// The force type combining a linear force and a torque.
  pub type Force<N> = Force2<N>;

  /// The inertia tensor type.
  pub type AngularInertia<N> = Matrix1<N>;

  /// The inertia type.
  pub type Inertia<N> = Inertia2<N>;

  /// The inertia matrix type.
  pub type InertiaMatrix<N> = Matrix3<N>;

  /// Square matrix with dimension `SpatialDim × SpatialDim`.
  pub type SpatialMatrix<N> = Matrix3<N>;

  /// The type of a constraint jacobian in twist coordinates.
  pub type Jacobian<N> = MatrixMN<N, U3, Dynamic>;

  /// The type of a slice of the constraint jacobian in twist coordinates.
  pub type JacobianSlice<'a, N> = MatrixSlice3xX<'a, N>;

  /// The type of a mutable slice of the constraint jacobian in twist coordinates.
  pub type JacobianSliceMut<'a, N> = MatrixSliceMut3xX<'a, N>;
}