# [−][src]Struct nphysics2d::algebra::Inertia2

```pub struct Inertia2<N: RealField> {
pub linear: N,
pub angular: N,
}```

The inertia of a rigid body grouping both its mass and its angular inertia.

## Fields

`linear: N`

The linear part (mass) of the inertia.

`angular: N`

The angular inertia.

## Methods

### `impl<N: RealField> Inertia2<N>`[src]

#### `pub fn new(linear: N, angular: N) -> Self`[src]

Creates an inertia from its linear and angular components.

#### `pub fn new_with_angular_matrix(linear: N, angular: Matrix1<N>) -> Self`[src]

Creates an inertia from its linear and angular components.

Get the mass.

#### `pub fn inv_mass(&self) -> N`[src]

Get the inverse mass.

Returns 0.0 if the mass is 0.0.

#### `pub fn zero() -> Self`[src]

Create a zero inertia.

#### `pub fn angular_matrix(&self) -> &Matrix1<N>`[src]

Get the angular inertia tensor.

#### `pub fn to_matrix(&self) -> Matrix3<N>`[src]

Convert the inertia into a matrix where the mass is represented as a 2x2 diagonal matrix on the upper-left corner, and the angular part as a 1x1 matrix on the lower-rigth corner.

#### `pub fn transformed(&self, _: &Isometry2<N>) -> Self`[src]

Compute the inertia on the given coordinate frame.

#### `pub fn inverse(&self) -> Self`[src]

Inverts this inetia matrix.

Sets the angular part to zero if it is not invertible.

## Trait Implementations

### `impl<N: RealField> Add<Inertia2<N>> for Inertia2<N>`[src]

#### `type Output = Inertia2<N>`

The resulting type after applying the `+` operator.

### `impl<N: RealField> Mul<Force2<N>> for Inertia2<N>`[src]

#### `type Output = Velocity2<N>`

The resulting type after applying the `*` operator.

### `impl<N: RealField> Mul<Velocity2<N>> for Inertia2<N>`[src]

#### `type Output = Force2<N>`

The resulting type after applying the `*` operator.

### `impl<N: RealField> Neg for Inertia2<N>`[src]

#### `type Output = Self`

The resulting type after applying the `-` operator.

## Blanket Implementations

### `impl<T> Same<T> for T`

#### `type Output = T`

Should always be `Self`

### `impl<T> ToOwned for T where    T: Clone, `[src]

#### `type Owned = T`

The resulting type after obtaining ownership.

### `impl<T, U> TryFrom<U> for T where    U: Into<T>, `[src]

#### `type Error = Infallible`

The type returned in the event of a conversion error.

### `impl<T, U> TryInto<U> for T where    U: TryFrom<T>, `[src]

#### `type Error = <U as TryFrom<T>>::Error`

The type returned in the event of a conversion error.